
Lecture 5
GROUP BY
and window functions

Dr Fintan Nagle
f.nagle@imperial.ac.uk

mailto:f.nagle@imperial.ac.uk


Imperial means Intelligent BusinessImperial College Business School 2

Reading

Video lectures:

3.3.1 - Theory of GROUP BY.mp4
3.3.2 - Making GROUP By queries.mp4
3.4 - Making ORDER BY queries.mp4

6.7 - Understanding window functions.mp4
6.8 - Using window functions.mp4

Postgres documentation on window functions: 
https://www.postgresql.org/docs/10/static/tutorial-window.html

https://www.postgresql.org/docs/10/static/tutorial-window.html


Imperial means Intelligent BusinessImperial College Business School 3

GROUP BY



Imperial means Intelligent BusinessImperial College Business School 4

GROUP BY

So far, we have looked at queries on individual rows. We have 
filtered out some rows using WHERE, and joined rows to other 
rows – but rows were treated individually.

GROUP BY allows us to put rows in groups and then perform 
operations on the whole group.

The most common operations are aggregate functions –
functions like MIN, MAX, MEAN and SUM. 

Aggregate functions take a group of rows and produce 
one number.



Imperial means Intelligent BusinessImperial College Business School 5

Aggregate functions

We can use aggregate functions on an entire table very 
simply:

SELECT COUNT(*)
FROM film

SELECT MAX(price)
FROM products

SELECT AVG(salary)
FROM employees



Imperial means Intelligent BusinessImperial College Business School 6

Putting things into groups

COUNT

SUM

AVG

MAX

MIN



Imperial means Intelligent BusinessImperial College Business School 7

Putting things into groups

name role age
Artemis working 2
Fido companion 4
Rover companion 6
Roger working 3
Buddy working 7
Daisy show 3
Shep working 10

dogs



Imperial means Intelligent BusinessImperial College Business School 8

Putting things into groups

name role age
Artemis working 2
Fido companion 4
Rover companion 6
Roger working 3
Buddy working 7
Daisy show 3
Shep working 10

SELECT role, COUNT(*)
FROM dogs 
GROUP BY role

dogs



Imperial means Intelligent BusinessImperial College Business School 9

Putting things into groups

name role age
Artemis working 2
Fido companion 4
Rover companion 6
Roger working 3
Buddy working 7
Daisy show 3
Shep working 10

SELECT role, COUNT(*)
FROM dogs 
GROUP BY role

dogs

working

companion

show

Artemis, Roger, Buddy, Shep

Fido, Rover

Daisy



Imperial means Intelligent BusinessImperial College Business School 10

Putting things into groups

name role age
Artemis working 2
Fido companion 4
Rover companion 6
Roger working 3
Buddy working 7
Daisy show 3
Shep working 10

SELECT role, COUNT(*)
FROM dogs 
GROUP BY role

dogs

role
working 4
companion 2
show 1

result



Imperial means Intelligent BusinessImperial College Business School 11

Putting things into groups

name role age
Artemis working 2
Fido companion 4
Rover companion 6
Roger working 3
Buddy working 7
Daisy show 3
Shep working 10

SELECT role, COUNT(*) AS dog_count
FROM dogs 
GROUP BY role

dogs

role dog_count
working 4
companion 2
show 1

result



Imperial means Intelligent BusinessImperial College Business School 12

Putting things into groups

name role age
Artemis working 2
Fido companion 4
Rover companion 6
Roger working 3
Buddy working 7
Daisy show 3
Shep working 10

SELECT role, COUNT(*) AS dog_count
FROM dogs 
GROUP BY role

dogs

role dog_count
working 4
companion 2
show 1

result
why COUNT(*)?



Imperial means Intelligent BusinessImperial College Business School 13

A note about COUNT

• COUNT(*) counts the number of rows, even if they have null cells

• COUNT(column) counts the number of rows where that column is not null

• COUNT(DISTINCT column) counts the number of distinct values in that column (nulls 
not counted)

• Usually, you either want COUNT(*) or COUNT(DISTINCT column)

• Whether you use COUNT(*) or COUNT(column) can be important in non-inner joins, 
where rows may have missing values.



Imperial means Intelligent BusinessImperial College Business School 14

Putting things into groups

name role age
Artemis working 2
Fido companion 4
Rover companion 6
Roger working 3
Buddy working 7
Daisy show 3
Shep working 10

SELECT role, COUNT(*) AS dog_count
FROM dogs 
GROUP BY role

dogs

role dog_count
working 4
companion 2
show 1

result
why COUNT(*)?

because we’re 
counting rows



Imperial means Intelligent BusinessImperial College Business School 15

Putting things into groups

name role age
Artemis working 2
Fido companion 4
Rover companion 6
Roger working 3
Buddy working 7
Daisy show 3
Shep working 10

SELECT role, MAX(age) AS max_dog_age
FROM dogs 
GROUP BY role

dogs

role max_dog_age
working 10
companion 6
show 3

result



Imperial means Intelligent BusinessImperial College Business School 16

Putting things into groups

name role age
Artemis working 2
Fido companion 4
Rover companion 6
Roger working 3
Buddy working 7
Daisy show 3
Shep working 10

SELECT role, AVG(age) AS mean_dog_age
FROM dogs 
GROUP BY role

dogs

role mean_dog_age
working 5.5
companion 5
show 3

result



Imperial means Intelligent BusinessImperial College Business School 17

Putting things into groups

name role age
Artemis working 2
Fido companion 4
Rover companion 6
Roger working 3
Buddy working 7
Daisy show 3
Shep working 10

SELECT role, SUM(age) AS total_dog_age
FROM dogs 
GROUP BY role

dogs

role total_dog_age
working 22
companion 10
show 3

result



Imperial means Intelligent BusinessImperial College Business School 18

HAVING

You can only use HAVING along with GROUP BY.

Starting with this query:

SELECT AVG(actor_1_facebook_likes) AS mean_likes
FROM movies
GROUP BY title_year

We can add a restriction with HAVING:

SELECT AVG(actor_1_facebook_likes) AS mean_likes
FROM movies
GROUP BY title_year
HAVING AVG(actor_1_facebook_likes) > 100



Imperial means Intelligent BusinessImperial College Business School 19

HAVING
We are not restricted to the columns (or aggregate function) 
used in SELECT:

SELECT AVG(actor_1_facebook_likes) AS mean_likes
FROM movies
GROUP BY title_year
HAVING MAX(actor_2_facebook_likes) > 100

However we can't use the new name – this will not run:

SELECT AVG(actor_1_facebook_likes) AS mean_likes
FROM movies
GROUP BY title_year
HAVING mean_likes > 100

We need to explicitly use the aggregate function.



Imperial means Intelligent BusinessImperial College Business School 20

Window functions



Imperial means Intelligent BusinessImperial College Business School 21

The running total
(cumulative sum)

A running total (equivalently, cumulative sum)
is a new column which adds up the figures in another column 
as we work down the table.



Imperial means Intelligent BusinessImperial College Business School 22

Window functions

A window function adds a new column to our result table.

This column can either

• Work down the rows in a particular order, 
doing something as it goes along
(this can be used to work out the running total)

• For each row, find a group of "related rows",
and do something to that group.



Imperial means Intelligent BusinessImperial College Business School 23

Window functions

Window functions are always placed in the SELECT clause.

Setting up a window function is like asking to select another column; 

the new column is defined (and constructed) by the window function.

The keyword OVER sets up a window function.

• The part before OVER is a function to be evaluated on each group.

• The part after OVER describes how the groups should be set up.

Running total of price in date order:

SUM(price) OVER (ORDER BY date)

Show the average salary of everyone else in the same department:

AVG(salary) OVER (PARTITION BY department_name)



Imperial means Intelligent BusinessImperial College Business School 24

Window functions

Using a window function is like adding a new column.

SELECT order_id,
SUM(price) OVER (ORDER BY date)
FROM orders;



Imperial means Intelligent BusinessImperial College Business School 25

Window functions

Using a window function is like adding a new column.

SELECT depname, empno, salary,
avg(salary) OVER (PARTITION BY depname)
FROM empsalary;



Imperial means Intelligent BusinessImperial College Business School 26

Window functions

SELECT depname, empno, salary, avg(salary)
OVER (PARTITION BY depname)
FROM empsalary;

OVER: shows that we’re applying a window function

PARTITION BY: sets up the groups the window function shall 
apply over. 

This is very similar to how an aggregate function behaves – but 
the final number of rows doesn’t go down, as the results for 
each group are copied rather than being unified. 



Imperial means Intelligent BusinessImperial College Business School 27

Window functions

We can also have both PARTITION BY and ORDER BY in the 
OVER section:

SELECT orderid, employeeid, orderdate,
SUM(freight) OVER (PARTITION BY employeeid ORDER BY 
orderdate) from orders
ORDER BY orderdate

This produces a separate running total for each employee.

What happens if you remove the final ORDER BY?



Imperial means Intelligent BusinessImperial College Business School 28

Window functions

The window function works down the table in a particular order.

For each row, it finds a set of related rows.

For an ORDER BY window function, the group starts off as the first row, then gets bigger by 
one row each time we move down another row (running total). We have to specify an 
order.

For a PARTITION BY window function, there is no order. Each row's related group is 
somehow related to the current row; we have to specify how they are related.



Imperial means Intelligent BusinessImperial College Business School 29

Window functions

A window function performs a calculation across a set of table rows that 
are somehow related to the current row. This is comparable to the type 
of calculation that can be done with an aggregate function. But unlike 
regular aggregate functions, use of a window function does not cause 
rows to become grouped into a single output row — the rows retain 
their separate identities. Behind the scenes, the window function is able 
to access more than just the current row of the query result.

[From the Postgres documentation]

https://www.postgresql.org/docs/9.1/tutorial-window.html



Imperial means Intelligent BusinessImperial College Business School 30

To remember about window functions

• One of the most powerful and useful features of SQL
• Need either a PARTITION BY, or an ORDER BY, or both
• The evaluation order of the window function is NOT the same as the 

display order of the final results!



Imperial means Intelligent BusinessImperial College Business School 31

Window functions

• Window functions are permitted only in the SELECT list and the 
ORDER BY clause of the query. They are forbidden elsewhere, such 
as in GROUP BY, HAVING and WHERE clauses. This is because 
they logically execute after the processing of those clauses. 

• Also, window functions execute after regular aggregate functions. 
This means it is valid to include an aggregate function call in the 
arguments of a window function, but not vice versa.

[From the Postgres documentation]



Imperial means Intelligent BusinessImperial College Business School 32

Window functions

A window function call always contains an OVER clause directly 
following the window function's name and argument(s). This is what 
syntactically distinguishes it from a regular function or aggregate 
function. The OVER clause determines exactly how the rows of the 
query are split up for processing by the window function. The 
PARTITION BY list within OVER specifies dividing the rows into groups, 
or partitions, that share the same values of the PARTITION BY 
expression(s). For each row, the window function is computed across 
the rows that fall into the same partition as the current row.

[From the Postgres documentation]



Imperial means Intelligent BusinessImperial College Business School 33

Window functions and COUNT DISTINCT

Distinct is not implemented for window functions.



Imperial means Intelligent BusinessImperial College Business School 34

Question: dvdrental database

Show Eleanor Hunt’s rental history, with cumulative total of how much 
she has paid.

SELECT first_name, last_name, rental_date, amount,
SUM(amount) OVER(ORDER BY rental_date)
AS cumulative_amount

FROM
customer INNER JOIN rental 
ON customer.customer_id = rental.customer_id
INNER JOIN payment 
ON rental.rental_id = payment.rental_id
WHERE first_name='Eleanor' AND last_name='Hunt'



Imperial means Intelligent BusinessImperial College Business School 35

Question: dvdrental database

NOTE: the window function can be processed in a different order than 
that in which the final rows are displayed!
Here they are both in date order:

SELECT first_name, last_name, rental_date, amount,
SUM(amount) OVER(ORDER BY rental_date)
AS cumulative_amount 
FROM
customer INNER JOIN rental 
ON customer.customer_id = rental.customer_id 
INNER JOIN payment 
ON rental.rental_id = payment.rental_id 
WHERE first_name='Eleanor' AND last_name='Hunt’
ORDER BY rental_date



Imperial means Intelligent BusinessImperial College Business School 36

Question: dvdrental database

NOTE: the window function can be processed in a different order than that 
in which the final rows are displayed!
Here the window function goes in date order but the display is by amount:

SELECT first_name, last_name, rental_date, amount,
SUM(amount) OVER(ORDER BY rental_date)
AS cumulative_amount 
FROM
customer INNER JOIN rental 
ON customer.customer_id = rental.customer_id 
INNER JOIN payment 
ON rental.rental_id = payment.rental_id 
WHERE first_name='Eleanor' AND last_name='Hunt’
ORDER BY amount



Imperial means Intelligent BusinessImperial College Business School 37

LEAD and LAG

You can access the next or previous rows with LEAD and LAG:

SELECT film_id, title, rental_rate,
LEAD(rental_rate) OVER (ORDER BY film_id) AS next_price,
LAG(rental_rate, 3) OVER (ORDER BY film_id) AS three_prices_ago
FROM film

LEAD(col): next row
LAG(col): previous row

LEAD(col, n): n rows ahead
LAG(col, n): n rows behind

These only refer to the execution order of the window function, not the order in 
which the results are displayed.


